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The paper presents the unsteady lifting surface theory to predict unsteady aerodynamic

forces on blades of aerodynamically coupled three annular bladerows. Blades of any one

bladerow are assumed to be vibrating. The bladerows are assumed to be individually

rotating with arbitrary rotational velocities, and therefore the model can be reduced to a

rotor/stator/rotor model or a counter-rotating multi-rotor system model by appro-

priately specifying rotational velocity parameters. The details of the mathematical

formulations and the solution procedures are described. Numerical studies were

conducted. The disturbances produced by a simple harmonic blade vibration are

composed of multiple frequency components because of aerodynamic interaction

between bladerows in mutual rotational motions. Relative magnitudes of the frequency

components of the unsteady aerodynamic forces are made clear. Not only the effects of

nonoscillating neighboring bladerows on the unsteady aerodynamic response of the

oscillating bladerow, but also the unsteady aerodynamic forces on nonoscillating

neighboring bladerows induced by the oscillating bladerow are investigated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The key mechanism governing the classical two-degrees-of-freedom flutter of an airfoil is the modal coupling, i.e., the
aerodynamic interaction between translational and pitching motions of the airfoil. The modal coupling is also the key
factor governing a three-dimensional wing flutter. In this case more than three vibration modes are aerodynamically
coupled.

As to the flutter of a bladerow composed of multiple blades, aerodynamic coupling among blades arises as an additional
important factor. The importance of the interblade coupling is confirmed by the fact that the aerodynamic force on
oscillating blades and the flutter boundary of a bladerow heavily depend on the interblade phase angle of blade vibration.

Directing the attention to actual multi-stage axial compressors and turbines, we have to further take into account the
effect of interbladerow aerodynamic coupling. From recent studies based on models of multiple bladerows [1,2,4–9] it is
now commonly understood that the unsteady aerodynamic response of oscillating blades is also significantly influenced by
presence of neighboring bladerows in mutual motion.

The salient feature of the unsteady flow field in multi-stage bladerows is so-called frequency and mode scattering
[10,11]. Unsteady disturbances originating from a simple harmonic oscillation of blades of one of the bladerows are
scattered into multiple frequency components due to aerodynamic coupling between bladerows in mutual rotational
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Nomenclature

All quantities are made dimensionless with respect to
length r�T ¼ tip radius
velocity W�a ¼ mean axial flow velocity
density r�0 ¼ mean fluid density
pressure r�0W�2a
time r�T=W�a
Further the following notations are used:
aðr; zÞ displacement amplitude of blade vibration

normal to the blade surface
Caj axial chord length of Row j

CLjða;bÞ unsteady local lift coefficient of Row j of
frequency ojða;bÞ: Eq. (60)

CFj generalized force on Row j: Eq. (65)
Gj axial coordinate position of the midchord

section of Row j in the absolute cylindrical
coordinate system

h hub-to-tip ratio
I½ � imaginary part of complex number
Kq velocity kernel function
Ma axial Mach number
NBj number of blades of Row j

nj coordinate normal to ðsj; rÞ surface, i.e., con-
stant Zj surface

q0jðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

: undisturbed flow velocity rela-

tive to Row j.
R½ � real part of complex number
Row 1 bladerow located at upstream station
Row 2 bladerow located at middle position
Row 3 bladerow located at downstream station

ðr;y; zÞ absolute (cylindrical) coordinate system fixed
to the duct

ðr;yj; zjÞ coordinate system relatively fixed to Row j

sj coordinate along an undisturbed streamline
relative to Row j

t time
Dpjðr; zj; tÞ unsteady pressure difference across a blade

surface of Row j

Zj ¼ yj �Ojzj helical coordinate
Oj rotational speed of Row j: O ¼ O�r�T=W�a:

o reduced frequency (o�r�T=W�a) of the blade
vibration

ojða;bÞ reduced frequency with integral mode para-
meters a and b in the frame of reference fixed
to Row j: Eqs. (35), (37), (39)

s interblade phase angle of bladerow vibration
divided by blade-to-blade angle, i.e., number of
nodal diameters of an annular bladerow
vibration

sjða;bÞ interblade phase angle divided by blade-to-
blade angle of the duct mode related to the
reduced frequency ojða;bÞ in the frame of
reference fixed to Row j: Eqs. (36), (38), (40)

yj0 angular position of the reference blade of Row j

at time t ¼ 0 in the absolute coordinate system
Subscript
j row number (j ¼ 1, 2 or 3)
jða;bÞ component of a fluctuating quantity with

frequency ojða;bÞ in the frame of reference
fixed to Row j

nj component normal to a blade surface of Row j
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motions. Therefore aerodynamic forces on all blades are composed of (infinite number of) multiple frequency components.
Furthermore we should note that the frequency components are not independent but dependent on each other, even if
small disturbance is assumed and the governing equations are linearized. Consequently when we deal with flutter
problems of multi-stage bladerows, we encounter a heavy task of computing the unsteady flow fields and predicting the
unsteady aerodynamic forces. In particular, the frequency and the mode of blade vibration at a critical flutter condition are
essentially unknown values to be determined in the aeroelastic analysis, and it is necessary to conduct a lot of aerodynamic
computations to search for the condition.

CFD techniques are now widely used to numerically simulate complicated unsteady flows in various problems. The
techniques are categorized into two families: time-linearized frequency-domain solvers and nonlinear time-accurate time-
domain solvers. The time-domain solvers provide straightforward time-marching simulations free from assumption of
small disturbances. However, because of the very large computational times required, they are not suitable tools for the
flutter analysis searching for the critical flutter conditions.

As far as problems of predicting critical flutter conditions are concerned, it is allowed to assume small unsteady
disturbances. As mentioned above, however, the unsteady flows through multiple bladerows are composed of multiple
frequency components dependent on each other, and therefore a simple harmonic time-dependence cannot be assumed.
One of the solutions to cope with the problem in the category of time-linearized frequency-domain techniques is the
harmonic balance technique developed by Hall et al. [3–6]. Those papers have provided new valuable knowledge as to the
essential feature and magnitude of influence of neighboring bladerows on the aerodynamic response of an oscillating
bladerow. However, although the harmonic balance technique is highly efficient compared with time-accurate solvers, the
computational time required is not short enough to use as a tool of aerodynamic computation for the comprehensive
aeroelastic flutter analysis.

The recent rapid progress in the electronic computer performance and the numerical computation technology has
expelled the classical analytical methods from the leading role in the theoretical studies of fluid mechanics, because the
applicability of the analytical methods is in general restricted to various assumptions, e.g., small disturbances, simple
geometries, etc. Nevertheless because of the overwhelmingly high computation efficiency, they are still useful to conduct
extensive studies on essential features of fundamental parameters.
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The first author’s research group has so far studied the problem of unsteady aerodynamics and flutter for a model of
counter-rotating annular cascades by using an analytical method. The analytical method is an extension of the first author’s
unsteady linearized lifting surface theory for a rotating annular cascade to the model of a pair of counter-rotating cascades.
A series of studies [7–9] have discovered the various aspects of the effect of a neighboring bladerow on the unsteady
aerodynamic response of oscillating blades and the flutter condition.

The present paper gives an extension of the analytical method to a model of three bladerows, which can deal with the
simultaneous influence of upstream and downstream bladerows. The same model has already been studied by Hall et al. on
the bases of the two-dimensional cascade theory [2] and three-dimensional Euler equation solver for multistage bladerows
[4]. The present paper aims at providing a more efficient calculation tool based on the linearized lifting surface theory,
which enables one to conduct extensive aeroelastic analyses at a smaller computation cost. In fact, the present theory has
recently been applied to the aeroelastic flutter analysis of the model of three bladerows, where the two rotor bladerows are
simultaneously vibrating under aerodynamic coupling [12]. In that paper, however, the unsteady aerodynamic theory is
only briefly described because of limited space.

This paper presents details of the unsteady lifting surface theory for a model of three bladerows formulated to calculate
the unsteady loadings on blades which are caused by vibrations of blades in one of the three bladerows.

In this paper, moreover, numerical studies are also conducted to investigate the simultaneous effects of upstream and
downstream neighboring bladerows on the aerodynamic response of oscillating blades. Furthermore, properties and
magnitudes of unsteady aerodynamic forces not only on the vibrating blades themselves, but also on the stationary blades
of the neighboring bladerows are investigated. In particular, the latter problem, i.e., how much aerodynamic forces are
exerted on the neighboring bladerows, is of high interest, because it is directly associated with the possibility of interrow
coupling flutter of multistage bladerows. However, this problem has been left unstudied.

2. Model description and mathematical formulation

2.1. Analytical model and geometries

We consider a model of three bladerows (Fig. 1) in an annular duct of an outer radius r�T and a hub-to-tip ratio h. The fluid
is an inviscid nonconducting perfect gas. The undisturbed flow is of a subsonic uniform axial flow of a velocity W�a, a density
r�0 and an axial Mach number Ma. Hereafter unstarred symbols denote dimensionless quantities. Lengths, velocities,
pressures, and times are normalized by r�T , W�a, r0W�2a , and r�T=W�a, respectively. We designate the bladerows by Row 1, Row 2
and Row 3, or by indices 1, 2 and 3. Row 1 is placed at the most upstream position, and is followed by Row 2 and Row 3 in
the downstream direction. The mathematical formulations are made by assuming that the rows are rotating at individual
angular velocities O1ð¼ O�1r�T=W�aÞ, O2 and O3, for greater versatility in parameter selection. The model, however, reduces
to a stator–rotor–stator model by specifying O1 ¼ O3 ¼ 0, and to a rotor–stator–rotor model by specifying O2 ¼ 0. The
signs of the rotational speeds are assumed as Oj 40 (clockwise looking from downstream) and Ojo0 (counterclockwise).

We denote cylindrical coordinate systems fixed to Row 1, Row 2, Row 3, and the duct by ðr; y1; z1Þ, ðr;y2; z2Þ, ðr; y3; z3Þ,
and ðr; y; zÞ, respectively. The coordinates fixed to the duct and Row j are related with each other by

y ¼ yj �Ojt þ yj0, (1)

z ¼ zj þ Gj, (2)
r

Row 1

1

h

Wa

G1

zΩ2Ω1

Row 3

Ω3

G2

G3

r

θ

Ω1

Ω2

Ω3

Row 2

Fig. 1. Three bladerows in individual rotation.
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where Gj denotes the axial position of the center of Row j in the duct-fixed coordinate system, and yj0 denotes the angular
position of the reference blade (numbered m ¼ 0) of Row j at time t ¼ 0. Further we define the helical coordinate Zj by

Zj ¼ yj �Ojzj. (3)

The relationship of transformation between Zj with respect to Row j and Zj0 with respect to Row j0 is given by

Zj ¼ yj �Ojzj ¼ yþOjðt � zjÞ � yj0 (4)

¼ Zj0 � ðOj0 �OjÞðt � zj0 Þ þOjðGj � Gj0 Þ þ yj00 � yj0. (5)

Note that Zj ¼ constant corresponds to an undisturbed streamsurface in the frame of reference fixed to Row j.
We denote the numbers of blades of the bladerows by NB1, NB2 and NB3, and the axial chord lengths of the blades by Ca1,

Ca2 and Ca3. We assume that the blades are of constant axial chord length and no axial sweep and no dihedral lean.
2.2. Outline of mathematical formulation

Assume the blades of Row 1 are oscillating at an angular reduced frequency oð¼ o�r�T=W�aÞ and an inter-blade phase
angle 2ps=NB1, and further the blades of Row 2 and Row 3 are not vibrating. This assumption is just for the sake of brevity
of expressions. The mathematical formulation can easily be made more comprehensive so that it can assume any one of the
three bladerows is oscillating. The computation program developed in this study can deal with any case by specifying a row
number of the vibrating bladerow.

Assume that the bladerows are operating with zero steady blade loading (zero time mean angle of attack, zero camber
and zero thickness), and the amplitude of the blade oscillation is very small. Hence the flow field is governed by linearized
equations.

Let the displacement normal to the blade surface of the m-th blade be given by

aðr; zÞeiotþi2pms=NB1 : m ¼ 0;1; . . . ;NB1 � 1. (6)

Note that s is an integral number corresponding to the number of nodal diameters of the annular bladerow vibration with a
constant interblade phase angle. This blade motion generates a disturbance of time dependence and circumferential modes
described as

D1 ¼ eiot
X1

m1¼�1

Dm1
ðr; zÞeiðm1NB1þsÞy1 , (7)

¼
X1

m1¼�1

Dm1
ðr; zÞeifoþðm1NB1þsÞO1gtþiðm1NB1þsÞðy�y10Þ, (8)

¼
X1

m1¼�1

Dm1
ðr; zÞeifoþðm1NB1þsÞðO1�O2Þgtþiðm1NB1þsÞðy2þy20�y10Þ, (9)

¼
X1

m1¼�1

Dm1
ðr; zÞeifoþðm1NB1þsÞðO1�O3Þgtþiðm1NB1þsÞðy3þy30�y10Þ, (10)

in terms of the frames of reference fixed to Row 1 (Eq. (7)), the duct (Eq. (8)), Row 2 (Eq. (9)), and Row 3 (Eq. (10)). Eqs. (9)
and (10) imply that the disturbance D1 is observed by Row 2 and Row 3 as a disturbance of multiple frequencies of
oþ ðm1NB1 þ sÞðO1 �O2Þ and oþ ðm1NB1 þ sÞðO1 �O3Þ, respectively.

Then interaction of the disturbance D1 with Row 2 yields a new disturbance D1�2 described as

D1�2 ¼
X1

m1¼�1

eifoþðm1NB1þsÞðO1�O2Þgt
X1

m2¼�1

Dm1m2
ðr; zÞeifm2NB2þðm1NB1þsÞgy2 , (11)

¼
X1

m1¼�1

X1
m2¼�1

Dm1m2
ðr; zÞeifoþðm1NB1þsÞO1þm2NB2O2gteifm2NB2þðm1NB1þsÞgðy�y20Þ, (12)

¼
X1

m1¼�1

X1
m2¼�1

Dm1m2
ðr; zÞeifoþm2NB2ðO2�O1Þgteifm2NB2þðm1NB1þsÞgðy1þy10�y20Þ, (13)

¼
X1

m1¼�1

X1
m2¼�1

Dm1m2
ðr; zÞeifoþðm1NB1þsÞðO1�O3Þþm2NB2ðO2�O3Þgteþifm2NB2þðm1NB1þsÞgðy3þy30�y20Þ. (14)

In the same manner, interaction of the disturbance D1 with Row 3 gives rise to another disturbance D1�3 of a form
similar to Eqs. (12)–(14). We should note that those disturbances D122 and D123 further interact with Row 3 and Row 2,
respectively, and generate new disturbances D12223. It is easy to infer that the final form of the disturbance flow field is
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expressed as

D1�2�3 ¼
X1

m1¼�1

X1
m2¼�1

X1
m3¼�1

Dm1m2m3
ðr; zÞeiom1 ;m2 ;m3

tþinm1 ;m2 ;m3
y, (15)

¼
X1

m1¼�1

X1
m2¼�1

X1
m3¼�1

Dm1m2m3
ðr; zÞeio1ðm2 ;m3Þ

tþiðm1NB1þs1ðm2 ;m3Þ
Þðy1þy10Þ, (16)

¼
X1

m2¼�1

X1
m3¼�1

X1
m1¼�1

Dm1m2m3
ðr; zÞeio2ðm3 ;m1Þ

tþiðm2NB2þs2ðm3 ;m1Þ
Þðy2þy20Þ, (17)

¼
X1

m3¼�1

X1
m1¼�1

X1
m2¼�1

Dm1m2m3
ðr; zÞeio3ðm1 ;m2Þ

tþiðm3NB3þs3ðm1 ;m2Þ
Þðy3þy30Þ, (18)

where

om1;m2;m3
¼ oþ ðm1NB1 þ sÞO1 þ m2NB2O2 þ m3NB3O3, (19)

nm1;m2;m3
¼ sþ m1NB1 þ m2NB2 þ m3NB3, (20)

o1ðm2;m3Þ
¼ oþ m2NB2ðO2 �O1Þ þ m3NB3ðO3 �O1Þ, (21)

s1ðm2 ;m3Þ
¼ sþ m2NB2 þ m3NB3, (22)

o2ðm3;m1Þ
¼ oþ m3NB3ðO3 �O2Þ þ ðm1NB1 þ sÞðO1 �O2Þ, (23)

s2ðm3 ;m1Þ
¼ sþ m3NB3 þ m1NB1, (24)

o3ðm1;m2Þ
¼ oþ ðm1NB1 þ sÞðO1 �O3Þ þ m2NB2ðO2 �O3Þ, (25)

s3ðm1;m2Þ
¼ sþ m1NB1 þ m2NB2. (26)

Note that Eq. (15) describes the flow field in terms of the frame of reference fixed to the duct, whereas Eqs. (16), (17) and
(18) describe it in terms of the frames of reference fixed to Row 1, Row 2 and Row 3, respectively. Here, om1;m2;m3

given by
Eq. (19) denotes frequencies of the disturbance observed in the frame of reference fixed to the duct. The disturbance is
composed of an infinite number of frequency components, which are identified by three integral parameters m1;m2 and m3.
The fundamental frequency is the blade vibration frequency o added by the nodal diameter passing frequency sO1, where
s denotes the number of the nodal diameters of the blade vibration mode of Row 1. The frequencies other than the
fundamental frequency are given by the fundamental frequency added by blade passing frequencies or their integral
multiples of the three bladerows.

The space structure of the disturbance is constructed from spinning duct modes with circumferential wavenumbers
nm1;m2;m3

, which are the nodal diameter s added by positive or negative integral multiples of the numbers of blades of the
three bladerows. Hereafter let us call the duct mode of n0;0;0 ¼ s the fundamental duct mode, while the duct modes of
nm1;m2;m3 with m1a0 and/or m2a0 and/or m2a0 the derivative duct modes. Note that the wavenumbers of the derivative
duct modes are not necessarily larger than the wavenumber of the fundamental duct mode. In the same way we call the
component of the fundamental frequency ojð0;0Þ the fundamental frequency component, and the components of ojða;bÞ
with aa0 and/or ba0 the derivative frequency components.

We should note that the frequencies and the circumferential wavenumbers are identified by the same integral numbers
m1;m2 and m3, but one frequency component does not necessarily correspond to one spinning mode. For instance, if Row 2
is not rotating (O2 ¼ 0), no waves of the blade passing frequency and its multiples of Row 2 (m2NB2O2) appear in the frame
of reference fixed to the duct, but Row 2 still contributes to multiplication of duct modes via the terms m2NB2 in Eq. (20).

On the other hand, Eqs. (21), (23) and (25) give frequencies of the disturbances observed in the frames of reference fixed to
Row 1, Row 2 and Row 3, respectively, whereas Eqs. (22), (24) and (26) denote the interblade phase parameters of the disturbance
components. For instance, the disturbance component with frequency o1ðm2;m3Þ

is observed in the frame of reference fixed to
Row 1 with interblade phase angle 2ps1ðm2;m3Þ

=NB1. Note again that a co-rotating bladerow does not contribute to frequency
multiplication, but still contributes to mode multiplication. For instance, if Row 1 and Row 3 are co-rotating (O1 ¼ O3) and
Row 1 is rotating relative to Row 2 (O1aO2), the frequency o1ðm2;m3Þ

does not depend on the integral parameter m3 and depends

on the parameter m2 alone, but the interblade phase parameter s1ðm2;m3Þ
still depends on both m2 and m3.

Those expressions indicate that the unsteady blade loading of each row should be resolved into components identified

by two integral parameters same as those in Eqs. (21)–(26). Let DpðmÞ
j
ðr; zj; tÞ denote the unsteady blade loading (lower

surface pressure minus upper surface pressure) of the m-th blade of Row j. Then it can be expressed by

DpðmÞ1 ðr; z1; tÞ ¼
X1

m2¼�1

X1
m3¼�1

Dp1ðm2;m3Þ
ðr; z1Þe

io1ðm2 ;m3Þ
tþi2pms1ðm2 ;m3Þ

=NB1 , (27)
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DpðmÞ2 ðr; z2; tÞ ¼
X1

m3¼�1

X1
m1¼�1

Dp2ðm3;m1Þ
ðr; z2Þe

io2ðm3 ;m1Þ
tþi2pms2ðm3 ;m1Þ

=NB2 , (28)

DpðmÞ3 ðr; z3; tÞ ¼
X1

m1¼�1

X1
m2¼�1

Dp3ðm1;m2Þ
ðr; z3Þe

io3ðm1 ;m2Þ
tþi2pms3ðm1 ;m2Þ

=NB3 . (29)

The concept of the lifting surface theory is to regard those unsteady blade loadings as disturbance sources, and express
the disturbance velocity field in the integral forms with kernel functions:

qðr;y; z; tÞ ¼
X1

m2¼�1

X1
m3¼�1

eio1ðm2 ;m3Þ
t
Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2;m3Þ

ðr; zÞ

�Kqðr;Z1; z1 � z jr;NB1;O1;o1ðm2;m3Þ
;s1ðm2 ;m3Þ

Þdzdr

þ
X1

m3¼�1

X1
m1¼�1

eio2ðm3 ;m1Þ
t
Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3;m1Þ

ðr; zÞ

�Kqðr;Z2; z2 � z jr; NB2;O2;o2ðm3 ;m1Þ
;s2ðm3;m1Þ

Þdzdr

þ
X1

m1¼�1

X1
m2¼�1

eio3ðm1 ;m2Þ
t
Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1;m2Þ

ðr; zÞ

�Kqðr;Z3; z3 � z jr;NB3;O3;o3ðm1;m2Þ
;s3ðm1 ;m2Þ

Þdzdr. (30)

Here Kq denotes the velocity kernel function. The details are given in Appendix A. Further noting that the kernel function is

decomposed into circumferential wavenumber modes as

Kqðr;Z; z jr; N;O;o;sÞ ¼
X1

m¼�1
eiðmNþsÞZKðmÞq ðr; z jr; N;O;o;sÞ, (31)

we can rewrite Eq. (30) into

qðr; y; z; tÞ ¼
X1

m1¼�1

X1
m2¼�1

X1
m3¼�1

eiom1 ;m2 ;m3
tþinm1 ;m2 ;m3

y e�inm1 ;m2 ;m3
ðO1z1þy10Þ

Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2;m3Þ

ðr; zÞ
"

�K
ðm1Þ
q ðr; z1 � z jr; NB1;O1;o1ðm2;m3Þ

;s1ðm2;m3Þ
Þdzdr

þ e�inm1 ;m2 ;m3
ðO2z2þy20Þ

Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3;m1Þ

ðr; zÞ

�K
ðm2Þ
q ðr; z2 � z jr; NB2;O2;o2ðm3;m1Þ

;s2ðm3;m1Þ
Þdzdr

þ e�inm1 ;m2 ;m3
ðO3z3þy30Þ

Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1;m2Þ

ðr; zÞ

�K
ðm3Þ
q ðr; z3 � z jr; NB3;O3;o3ðm1;m2Þ

;s3ðm1;m2Þ
Þdzdr

#
. (32)

So far we have assumed that the blades of Row 1 are vibrating. However, we can easily generalize the expressions for

arbitrary cases. Let the row number of the bladerow with vibrating blades be jv. Then, we have just to rewrite Eqs. (19)–(26)
into

om1;m2;m3
¼ oþ sOjv

þ m1NB1O1 þ m2NB2O2 þ m3NB3O3, (33)

nm1 ;m2;m3
¼ sþ m1NB1 þ m2NB2 þ m3NB3, (34)

o1ðm2 ;m3Þ
¼ oþ sðOjv

�O1Þ þ m2NB2ðO2 �O1Þ þ m3NB3ðO3 �O1Þ, (35)

s1ðm2;m3Þ
¼ sþ m2NB2 þ m3NB3, (36)

o2ðm3 ;m1Þ
¼ oþ sðOjv

�O2Þ þ m3NB3ðO3 �O2Þ þ m1NB1ðO1 �O2Þ, (37)

s2ðm3;m1Þ
¼ sþ m3NB3 þ m1NB1, (38)

o3ðm1 ;m2Þ
¼ oþ sðOjv

�O3Þ þ m1NB1ðO1 �O3Þ þ m2NB2ðO2 �O3Þ, (39)

s3ðm1;m2Þ
¼ sþ m1NB1 þ m2NB2, (40)

whereas, there is no need to rewrite expressions given by Eqs. (27)–(32).
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3. Integral equations for blade loading functions

Eqs. (30) and (32) express the disturbance flow field as linearized superposition of disturbances generated from three
bladerows. Here the unsteady blade loadings play roles of disturbance sources in appearance. We should recall, however,
that the real origin of the disturbance is vibration of blades, and hence the unsteady blade loadings are not prescribable
quantities but what should be calculated. The unsteady blade loadings are determined so that the disturbance velocity
satisfies the flow tangency condition on blade surfaces.

Let the blades of Row jv be vibrating at a reduced frequency o and an interblade phase angle 2ps=NBjv
with normal

displacement aðr; zjv
Þeiot . Then, the flow tangency condition on the blade surfaces is expressed as follows:

½qnj�Zj¼�0 ¼ dj;jv
ioaðr; zjÞ þ

qaðr; zjÞ

qzj

 !
eiot : �Caj=2 � zj � Caj=2; j ¼ 1;2;3. (41)

Here qnj denotes the nj component of q, i.e., the velocity component normal to blade surfaces of Row j. Further, dj;jv
denotes Kronecker delta. At a blade surface of Row j, it holds that Zj ¼ 0 and hence y ¼ �Ojðt � zjÞ þ yj0. Then we have an
expression as follows:

½qnj�Zj¼0 ¼
X1

m1¼�1

X1
m2¼�1

X1
m3¼�1

eiðom1 ;m2 ;m3
�nm1 ;m2 ;m3

OjÞt

� e�inm1 ;m2 ;m3
fðO1�OjÞzj�O1ðG1�GjÞþy10�yj0g

Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2;m3Þ

ðr; zÞ
"

�K
ðm1Þ

qnj 1
ðr; zj � ðG1 � GjÞ � z jr; NB1;O1;o1ðm2;m3Þ

;s1ðm2;m3Þ
Þdzdr

þ e�inm1 ;m2 ;m3
fðO2�OjÞzj�O2ðG2�GjÞþy20�yj0g

Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3;m1Þ

ðr; zÞ

�K
ðm2Þ

qnj 2
ðr; zj � ðG2 � GjÞ � z jr; NB2;O2;o2ðm3;m1Þ

;s2ðm3;m1Þ
Þdzdr

þ e�inm1 ;m2 ;m3
fðO3�OjÞzj�O3ðG3�GjÞþy30�yj0g

Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1;m2Þ

ðr; zÞ

� K
ðm3Þ

qnj 3
ðr; zj � ðG3 � GjÞ � z jr; NB3;O3;o3ðm1;m2Þ

;s3ðm1;m2Þ
Þdzdr

#
. (42)

Here

K
ðmÞ
qnj j0

ðr; z jr;N;O;o;sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j0 r
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q ½�ðOj �Oj0 ÞK

ðmÞ
qs ðr; z jr;N;O;o;sÞ

þ ð1þOjOj0 r
2ÞK
ðmÞ
qn ðr; z jr;N;O;o;sÞ�. (43)

It denotes the kernel function for the velocity component normal to the blades surfaces of Row j of the disturbances
generated from the blade loadings of Row j0. Note that the expression of Eq. (42) is grouped by frequency, and it holds that

om1;m2 ;m3
� nm1;m2;m3

Oj ¼

o1ðm2 ;m3Þ
: j ¼ 1

o2ðm3 ;m1Þ
: j ¼ 2

o3ðm1 ;m2Þ
: j ¼ 3

8>><
>>:

9>>=
>>;. (44)

Then substituting Eq. (42) into Eq. (41) and requiring each frequency component to satisfy Eq. (41) individually, we
obtain a system of integral equations for the unsteady blade loading functions as follows:

Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2;m3Þ

ðr; zÞKqnðr;0; z1 � z jr;NB1;O1;o1ðm2;m3Þ
;s1ðm2;m3Þ

Þdzdr

þ
XA

m1¼�A

e�inm1 ;m2 ;m3
fðO2�O1Þz1�O2ðG2�G1Þþy20�y10g

Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3;m1Þ

ðr; zÞ

�K
ðm2Þ

qn1 2ðr; z1 � ðG2 � G1Þ � z jr; NB2;O2;o2ðm3;m1Þ
;s2ðm3;m1Þ

Þdzdr

þ
XA

m1¼�A

e�inm1 ;m2 ;m3
fðO3�O1Þz1�O3ðG3�G1Þþy30�y10g

Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1;m2Þ

ðr; zÞ

�K
ðm3Þ

qn1 3ðr; z1 � ðG3 � G1Þ � z jr; NB3;O3;o3ðm1;m2Þ
;s3ðm1;m2Þ

Þ dzdr

¼ C1ðm2;m3Þ
ðr; z1Þ ðm2 ¼ 0;�1; . . . ;�A; m3 ¼ 0;�1; . . . ;�AÞ, (45)
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XA

m2¼�A

e�inm1 ;m2 ;m3
fðO1�O2Þz2�O1ðG1�G2Þþy10�y20g

Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2 ;m3Þ

ðr; zÞ

�K
ðm1Þ

qn2 1ðr; z2 � ðG1 � G2Þ � z jr; NB1;O1;o1ðm2 ;m3Þ
;s1ðm2;m3Þ

Þ dzdr

þ

Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3;m1Þ

ðr; zÞKqnðr;0; z2 � z jr;NB2;O2;o2ðm3;m1Þ
;s2ðm3 ;m1Þ

Þdzdr

þ
XA

m2¼�A

e�inm1 ;m2 ;m3
fðO3�O2Þz2�O3ðG3�G2Þþy30�y20g

Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1 ;m2Þ

ðr; zÞ

� K
ðm3Þ

qn2 3ðr; z2 � ðG3 � G2Þ � z jr;NB3;O3;o3ðm1;m2Þ
;s3ðm1 ;m2Þ

Þdzdr

¼ C2ðm3;m1Þ
ðr; z2Þ ðm3 ¼ 0;�1; . . . ;�A; m1 ¼ 0;�1; . . . ;�AÞ, (46)

XA

m3¼�A

e�inm1 ;m2 ;m3
fðO1�O3Þz3�O1ðG1�G3Þþy10�y30g

Z 1

h

Z Ca1=2

�Ca1=2
Dp1ðm2 ;m3Þ

ðr; zÞ

� K
ðm1Þ

qn3 1ðr; z3 � ðG1 � G3Þ � z jr; NB1;O1;o1ðm2 ;m3Þ
;s1ðm2;m3Þ

Þdzdr

þ
XA

m3¼�A

e�inm1 ;m2 ;m3
fðO2�O3Þz3�O2ðG2�G3Þþy20�y30g

Z 1

h

Z Ca2=2

�Ca2=2
Dp2ðm3 ;m1Þ

ðr; zÞ

�K
ðm2Þ

qn3 2ðr; z3 � ðG2 � G3Þ � z jr;NB2;O2;o2ðm3;m1Þ
;s2ðm3 ;m1Þ

Þdzdr

þ

Z 1

h

Z Ca3=2

�Ca3=2
Dp3ðm1;m2Þ

ðr; zÞKqnðr;0; z3 � z jr;NB3;O3;o3ðm1;m2Þ
;s3ðm1 ;m2Þ

Þdzdr

¼ C3ðm1;m2Þ
ðr; z3Þ ðm1 ¼ 0;�1; . . . ;�A; m2 ¼ 0;�1; . . . ;�AÞ, (47)

where

Cjða;bÞðr; zjÞ ¼ dj;jv
da;0db;0 ioaðr; zjÞ þ

q
qzj

aðr; zjÞ

( )
. (48)

We should note that all blade loading components are dependent on each other, and cannot be determined individually.
The numerical task to solve the system of integral equations must be carried out by truncating the infinite series to
finite ones. As shown later, the most dominant components are the fundamental ones with integral mode parameters
of zero, i.e., Dpjð0;0Þðr; zÞ. Therefore, as shown in Eqs. (45)–(47), truncation should be made by retaining terms
of the integral mode parameters from �A to A, where A denotes an appropriate positive integral number. The
previous studies on counter-rotating bladerows [7–9] indicate that computation even using A as small as A ¼ 1 can
give sufficiently good estimations of the fundamental frequency components Dpjð0;0Þðr; zjÞ from an engineering point
of view.

4. Transform of integral equations into algebraic equations

Hereafter, all bladerows are assumed subsonic. Therefore relative flow velocity is subsonic at any radial station, i.e.,

Ma

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

o1 for h � r � 1, (49)

for all three bladerows (j ¼ 1;2 and 3). Let the unsteady loading functions Dpjða;bÞðr; zÞ be expanded into mode function
series as follows:

Dpjða;bÞðr; zÞ ¼
XL�1

k¼0

Rð1Þ
k
ðrÞ

XI�1

m¼0

Pjða;bÞkmFmðfÞ, (50)

where

F0ðfÞ ¼ cotðf=2Þ; FmðfÞ ¼ sin mf : ðm � 1Þ, (51)

z ¼ �ðCaj=2Þ cosf : 0 � f � p. (52)

Further Rð1Þ
k
ðrÞ is the radial eigenfunction of infinite circumferential order defined in Appendix B.2. The numbers of the

finite series terms L and I should be selected from the accuracy point of view. The first author’s previous studies on models
of a single bladerow [13,14] assure that selection of L ¼ 7 and I ¼ 7 gives a sufficient accuracy from an engineering
standpoint.
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Substituting Eq. (50) into Eqs. (45)–(47), and formally conducting integrations with respect to r and z, we obtain
algebraic equations for blade loading function coefficients Pjða;bÞkm as follows:

XL�1

k¼0

XI�1

m¼0

P1ðm2;m3ÞkmIK1 1ðm2;m3Þkmðr; z1Þ þ
XA

m1¼�A

fP2ðm3;m1ÞkmIK
ðm2Þ

1 2ðm3;m1Þkm
ðr; z1 � G2 þ G1Þ

2
4

þP3ðm1;m2ÞkmIK
ðm3Þ

1 3ðm1;m2Þkm
ðr; z1 � G3 þ G1Þg

3
5

¼ C1ðm2;m3Þ
ðr; z1Þ ðm2 ¼ 0;�1; . . . ;�A; m3 ¼ 0;�1; . . . ;�AÞ, (53)

XL�1

k¼0

XI�1

m¼0

XA

m2¼�A

P1ðm2;m3ÞkmIK
ðm1Þ

2 1ðm2;m3Þkm
ðr; z2 � G1 þ G2Þ

2
4

þ P2ðm3;m1ÞkmIK2 2ðm3;m1Þkmðr; z2Þ þ
XA

m2¼�A

P3ðm1;m2ÞkmIK
ðm3Þ

2 3ðm1;m2Þkm
ðr; z2 � G3 þ G2Þ

3
5

¼ C2ðm3;m1Þ
ðr; z2Þ ðm3 ¼ 0;�1; . . . ;�A; m1 ¼ 0;�1; . . . ;�AÞ, (54)

XL�1

k¼0

XI�1

m¼0

XA

m3¼�A

fP1ðm2;m3ÞkmIK
ðm1Þ

3 1ðm2;m3Þkm
ðr; z3 � G1 þ G3Þ

2
4

þP2ðm3;m1ÞkmIK
ðm2Þ

3 2ðm3;m1Þkm
ðr; z3 � G2 þ G3Þg þ P3ðm1;m2ÞkmIK3 3ðm1 ;m2Þkmðr; z3Þ

3
5

¼ C3ðm1;m2Þ
ðr; z3Þ ðm1 ¼ 0;�1; . . . ;�A; m2 ¼ 0;�1; . . . ;�AÞ, (55)

where

IKj jða;bÞkmðr; zjÞ ¼

Z 1

h

Z p

0

Caj

2
sinfFmðfÞR

ð1Þ

k
ðrÞ

�Kqnðr;0; zj þ ðCaj=2Þ cosf jr;NBj;Oj;ojða;bÞ;sjða;bÞÞdrdf, (56)

IK
ðgÞ
j j0ða;bÞkm

ðr; zj � Gj0 þ GjÞ

¼ e�ina;b;gfðOj0 �OjÞzj�Oj0 ðGj0 �GjÞþyj00�yj0g
Z 1

h

Z p

0

Caj0

2
sinfFmðfÞR

ð1Þ

k
ðrÞ

�K
ðgÞ
qnj j0

ðr; zj � Gj0 þ Gj þ ðCaj0=2Þ cosf jr;NBj0 ;Oj0 ;oj0ða;bÞ;sj0ða;bÞÞdrdf, (57)

Note that the integrands of integrals with respect to r and f in Eqs. (56) and (57) can be divided into two parts: a singular
part that can analytically be integrated and a regular part that should numerically be integrated. But the accuracy of the
numerical integration can be made as high as desired by increasing the numbers of integration points.

Letting Eqs. (53)–(55) be satisfied at L representative radial positions ðr ¼ r1; r2; . . . ; rLÞ and I representative axial
positions ðzj ¼ zj1; zj2; . . . ; zjIÞ, we can determine the coefficients Pjða;bÞkm as solutions of a system of linearized algebraic
equations. The number of unknowns is equal to L� I � ð2Aþ 1Þ2 � 3.
5. Unsteady aerodynamic characteristics

5.1. Unsteady aerodynamic force and moment

With regard to aðr; zÞ in Eqs. (41) and (48), we can specify it by an appropriate mode shape function. We assume that
aðr; zÞ is a normalized function and the actual blade displacement is given by A�aðr; zÞ. Note also that all aerodynamic force
is composed of multiple frequencies ojða;bÞ. Therefore all dimensionless aerodynamic parameters defined below are
associated with the individual frequency components and expressed with a subscript jða;bÞ.

5.1.1. Unsteady pressure difference coefficient

The unsteady pressure difference across a blade surface is given by

Dp�jða;bÞðr; zÞe
iojða;bÞt ¼ eiojða;bÞtðA�=r�T Þr

�
0W�2a Dpjða;bÞðr; zÞ, (58)

where

Dpjða;bÞðr; zÞ ¼
XL�1

k¼0

Rð1Þ
k
ðrÞ

XI�1

m¼0

Pjða;bÞkmFmðfÞ. (59)
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5.1.2. Unsteady local lift coefficient

The unsteady local lift coefficient is defined by

CLjða;bÞðrÞ 	

R C�j =2

�C�j =2
Dp�

jða;bÞ ds�

r�0W�2a C�j ðA
�=r�T Þ

, (60)

where C�j ¼ r�T Caj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

(local chord length) and ds� ¼ r�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

dz. Then

CLjða;bÞðrÞ ¼
1

Caj

Z Caj=2

�Caj=2
Dpjða;bÞðr; zÞdz

¼
XL�1

k¼0

Rð1Þ
k
ðrÞ SPjða;bÞk, (61)

where

SPjða;bÞk ¼
p
2

Pjða;bÞk0 þ
1

2
Pjða;bÞk1

� �
. (62)

5.2. Generalized force

Let the blades of Row j be vibrating at a reduced frequency o and a vibration mode aðr; zjÞ. Then, the unsteady
aerodynamic work on an vibrating blade per cycle is given by

W� ¼

I
dtr�T

Z 1

h
dr

Z C�j =2

�C�j =2
R½Dp�j ðr; z; tÞ�R

d

dt
fA�aðr; zjÞ e

iotg

� �
ds� (63)

¼ r�0W�2a r�3T ðA
�=r�T Þ

2 p
Z 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

dr

Z Caj=2

�Caj=2
I½Dpjð0;0Þðr; zjÞaðr; z1Þ�dzj. (64)

Here ð Þ denotes a complex conjugate.
As we have already seen, the unsteady blade loading is composed of various frequency components ojða;bÞ : a ¼ 0;

�1;�2; . . . ;�A; b ¼ 0;�1;�2; . . . ;�A. But it is obvious that only the component of a ¼ b ¼ 0 (the component of the blade
vibration frequency; ojð0;0Þ ¼ o) acting on the vibrating blade itself contributes to the aerodynamic work per cycle. Noting

that only blades of Row j are assumed to be vibrating, we define the dimensionless generalized force CFj by

CFj ¼

Z 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

dr

Z Caj=2

�Caj=2
Dpjð0;0Þðr; zjÞaðr; zjÞdzj. (65)

¼
Caj

2

XL�1

k¼0

XI�1

m¼0

Pjð0;0ÞkmSARj;km, (66)

where

SARj;km ¼

Z 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

Rð1Þ
k
ðrÞ

Z p

0
FmðyÞaðr; zÞ sin ydydr. (67)

The generalized force defined as above appears in flutter equations describing blade motions. In the present case the
aerodynamic work per cycle on oscillating blade is given by

W� ¼ r�0W�2a r�3T pðA�=r�T Þ
2 I CFj

h i
. (68)

Therefore the stability or instability of the blade vibration can be identified by the sign of the imaginary part of the
generalized force CFj.

6. Numerical results and discussions

6.1. Specified conditions

We assume that the blade vibration is composed of the first-order bending mode and the first-order torsion mode, and
the displacement amplitude normal to the blade surface is expressed by

aðr; zjÞ ¼ HCajh1ðrÞ þYy1ðrÞðzj � zeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q

. (69)
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Here Hð¼ H�=r�T Þ and Y denote the translational displacement amplitude and the angle amplitude of bending and torsion,
respectively, and ze denotes the elastic axis position. Note that H and Y are not necessarily real numbers. The mode shape
functions h1ðrÞ and y1ðrÞ are assumed to be of uniform canti-lever beam and given by

h1ðrÞ ¼ ½ðsinU1 � sinhU1ÞfsinhðU1XðrÞÞ � sinðU1XðrÞÞg
þ ðcoshU1 þ cosU1ÞfcoshðU1XðrÞÞ � cosðU1XðrÞÞg�=ð2 sinU1 sinhU1Þ (70)

and

y1ðrÞ ¼ sinðpXðrÞ=2Þ, (71)

where U1 ¼ 0:597p, XðrÞ ¼ ðr � hÞ=ð1� hÞ. Note that the mode functions are normalized so that h1ð1Þ ¼ 1, y1ð1Þ ¼ 1.
The conditions investigated in this paper are given in Table 1. Here we deal with combinations of stators and rotors. We

denote the combinations by S1–R2–S3 and R1–S2–R3 instead of Row1–Row2–Row3. For comparison we also deal with
combinations of two bladerows R1–S2, S1–R2 and so forth, and further an isolated bladerow S or R. The row of vibrating
blades is not necessarily the middle one. We indicate it by (V), for instance, R1(V)–S2–R3. The relative Mach number for the
rotor varies from 0.595 at the root to 0.9 at the tip, the stagger angle of the rotor varies from 40:89
 at the root to 60
 at the
tip, and the pitch/chord ratio of the rotor varies from 0.396 at the root to 0.523 at the tip. On the other hand the pitch/chord
ratio of the stator varies from 0.393 at the root to 0.7854 at the tip. Further in this paper, results are shown only for the
blade vibration of the reduced frequency oCaj ¼ 1:0 and the bending vibration of A�=r�T ¼ Ha0; Y ¼ 0.

The distances between two adjacent bladerows are assumed equal, i.e., G2 � G1 ¼ G3 � G2 ¼ G, and denoted by, e.g.
G ¼ 1:2Ca, where Ca is the mean axial chord length of the two adjacent bladerows.

6.2. Validation of computation programs, codes and term truncations

As to the numbers of the terms of the finite series expansion in Eq. (50), we took L ¼ 7 and I ¼ 7, which were found to
give a sufficient accuracy in the previous studies [13,14]. To reconfirm the accuracy, we show the radial distributions of the
fundamental frequency component of the local lift coefficient CL2ð0;0ÞðrÞ on vibrating Rotor 2 computed using L ¼ 7 and 9 in
Fig. 2 and also the chordwise distributions of the fundamental frequency component of the pressure difference Dp2ð0;0Þðr; zÞ

at midspan r ¼ 0:75 computed using I ¼ 7 and 11 in Fig. 3. Almost perfect coincidence is observed between L ¼ 7 and 9.
Difference between I ¼ 7 and 11 is also very small.

On the other hand the integral numbers m1, m2, and m3 are truncated by specifying A ¼ 1 in Eqs. (53)–(55), because the
previous studies on counter-rotating bladerows indicated that A ¼ 1 gives a sufficient accuracy for evaluation of the
aerodynamic forces of the fundamental frequency component ojð0;0Þ as far as the relative flow velocities for all bladerows
are subsonic. The effects of A in the present model are discussed later, too.

The computation procedure based on the present lifting surface theory is essentially straightforward. We have only to

compute the coefficients IK1 1ðm2;m3Þkm‘ðr; z1Þ, IK
ðm2Þ

1 2ðm3;m1Þkm‘
ðr; z1 � G2 þ G1Þ, etc. in Eqs. (53)–(55) and solve the linear

algebraic system equations for P1ðm2;m3Þkm, etc. However, the mathematical expressions of the kernel functions are

complicated, and hence the computation programs to compute the coefficients become highly complicated and lengthy.
Therefore validation of the computation codes is required to assure the reliability of the numerical results.

The validity of the computation codes has already been proved in Ref. [12], where the result of the present theory is
compared with the Euler code solution for a sample problem given in Ref. [4]. A good agreement between both solutions is
shown in Fig. 2 of Ref. [12].

6.3. Frequency components of aerodynamic forces

The frequency spectrum of the aerodynamic forces on the blades and vanes is one of the matters of high interest. The
frequency components of absolute values of the unsteady local lift coefficient jCLjða;bÞðrÞj defined by Eq. (61) at midspan
r ¼ 0:75 are given in Figs. 4 and 5 for the cases of vibrating Rotor 2 at middle position (S1–R2(V)–S3) and vibrating Rotor 1
at upstream position (R1(V)–S2–R3), respectively. For comparison the values of an isolated rotor with a single frequency
component are also shown.
Table 1
Specified parameters.

Hub/tip ratio h 0.5

Axial Mach number Ma 0.45

Number of rotor blades NBj 36

Number of stator vanes NBj 54

Axial chordlength (rotor) Caj 6.0/36

Axial chordlength (stator) Caj 8.0/54

Rotational speed (rotor) Oj 1.73205



ARTICLE IN PRESS

Chordwise Coordinate z/Ca

Pr
es

su
re

 D
if

fe
re

nc
e 

C
oe

ff
ic

ie
nt

-0.4 -0.2 0 0.2 0.4

-15

-10

-5

0

5

10

15

ABS: I = 7
REAL: I = 7
IMAG: I = 7
ABS: I = 11
REAL: I = 11
IMAG: I = 11

Fig. 3. The fundamental frequency component of the pressure difference Dpð0;0Þðr; zÞ at midspan r ¼ 0:75 of vibrating Rotor 2. s ¼ �10. G ¼ 1:2Ca.

Comparison between computations with I ¼ 7 and 11.

Radial Coordinater

L
oc

al
 L

if
t C

oe
ff

ic
ie

nt
on

 R
2

0.5 0.6 0.7 0.8 0.9 1
-6

-5

-4

-3

-2

-1

0

REAL: L = 9
IMAG: L = 9
REAL: L = 7
IMAG: L = 7

Fig. 2. The fundamental frequency component of the local lift coefficient CL2ð0;0ÞðrÞ of vibrating Rotor 2. s ¼ �10. G ¼ 1:2Ca . Comparison between

computations with L ¼ 7 and 9.

M. Namba et al. / Journal of Sound and Vibration 326 (2009) 599–622610
Firstly, in general, the fundamental frequency component ð0;0Þ, i.e., (a ¼ 0;b ¼ 0) is overwhelmingly dominant for each
bladerow, and the derivative components (aa0 or ba0) are very small.

Secondly, the aerodynamic force on the oscillating bladerow is larger than that on nonoscillating neighboring
bladerows, but the latter is not very small.

Thirdly, as shown in Fig. 5, the vibrating upstream Rotor 1 gives a significant amount of aerodynamic force on co-
rotating Rotor 3 located at the next to the next position. In other words, the influence of an oscillating bladerow on the next
to the next bladerow is never small.

We should also note that the fundamental frequency of the aerodynamic force on Rotor 3 is equal to the frequency of
blade vibration of Rotor 1. This fact was our motivation to conduct the analysis of interrow coupling flutter for the model of
three bladerows in which two rotor bladerows are simultaneously vibrating [12].
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6.4. Effects of derivative duct modes on the fundamental force components

As shown in Eq. (15), the disturbance flow field is composed of an infinite number of spinning duct modes. Note that the
duct modes are identified by the circumferential wavenumber nm1;m2;m3

and the radial order (radial node number) ‘. In our
computation the radial node number is taken up to ‘ ¼ L� 1 ¼ 6. Most dominant modes are the fundamental duct modes
of the circumferential wavenumber n0;0;0 ¼ s, which are closely related to the fundamental components of the blade
loadings Dp1ð0;0Þ, Dp2ð0;0Þ, and Dp3ð0;0Þ. On the other hand, the derivative duct modes with the circumferential
wavenumbers of nonzero integral parameters ðm1;m2;m3Þ are closely related to the derivative components of the blade

loadings Dp1ðm2;m3Þ
, Dp2ðm3;m1Þ

, and Dp3ðm1;m3Þ
. However we should note that the derivative duct modes also exert influence

on the fundamental components of the blade loadings.
In order to see how much the fundamental components of the blade loadings are affected by the influence of the

derivative duct modes, we compare in Fig. 6 the real part of the fundamental components of the unsteady local lift
coefficients CLjð0;0ÞðrÞ at midspan r ¼ 0:75 obtained by computation using A ¼ 2 and 1 , i.e., including the effects of the
derivative duct modes to those obtained using A ¼ 0, i.e., excluding derivative duct modes.

Firstly, as shown in the figures, the differences between the computations using A ¼ 1 and 0 are remarkably small
except at the interblade phase angles near �p (s ¼ �18), where minor differences are observed. This implies that the
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influence of the derivative duct modes on the fundamental components of the blade loadings is very small. The same
knowledge has already been found in Ref. [4] for the fundamental component of the aerodynamic force on oscillating
blades themselves CL1ð0;0Þ. The present results indicate that the minor influence of the derivative duct modes also holds
true for the fundamental components of the aerodynamic forces on nonoscillating neighboring bladerows CL2ð0;0Þ and
CL3ð0;0Þ.

Secondly, no essential difference is observed between the computations using A ¼ 1 and 2 even near s ¼ �18. This
suggests that selecting A ¼ 1 is sufficient for predicting the fundamental frequency components of the aerodynamic forces.

We should note that the circumferential wavenumbers of the duct modes are given by nm1;m2;m3 ¼ sþ ðm1 þ m2Þ �

36þ m2 � 54 for the example case. Then we can easily see that there are derivative duct modes with circumferential
wavenumbers smaller than that of the fundamental duct mode, when s is close to �18. The duct modes of small
circumferential wavenumbers can be cut-on, and will contribute effectively to acoustic interbladerow interaction.

However, the fact that good estimations can be obtained using A ¼ 0 for a wide range of the interblade phase angle is
highly beneficial from the practical point of view, because computation costs, e.g., for flutter analyses, can drastically be
reduced.
6.5. Effects of neighboring blade rows on generalized forces

Fig. 7 shows the generalized force on oscillating middle Rotor 2 (S1–R2(V)–S3) as a function of the interblade phase
parameter s. For comparison, the generalized forces for the combination of S1–R2(V) and the isolated rotor R(V) are also
plotted. Here, we should note that the lowest order acoustic duct mode ðs;0Þ, i.e., the circumferential wavenumber n ¼ s
and the radial order ‘ ¼ 0 is cut-on over the range �1oso10.

In this example, the row-to-row distance is small, i.e., G ¼ 1:2Ca. Here Ca denote the average of axial chordlengths of the
adjacent two bladerows. The difference from the values of the isolated bladerow for the case of S1–R(V)–S3 is significantly
large and much higher than that for the case of S1–R(V). This indicates that the simultaneous reflecting effects of the
adjacent upstream and downstream bladerows significantly modify the aerodynamic response of oscillating blades. We
should also note that the influence is large in the range of cut-off of the duct mode ðs;0Þ rather than in the range of cut-on
in this case of small bladerow gap.

In order to see the influence of the next to the next bladerow, we compare in Fig. 8 the case of R1(V)–S2–R3 with that of
R1(V)–S2. The difference in the generalized force between the two cases is rather small. This suggests the reflecting effect
of the next to the next bladerow on the aerodynamic response of oscillating blades is not significant. We should note,
however, that it never means small aerodynamic influences of the oscillating blades on the next to the next bladerow, as is
further discussed later.
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The dependences of the neighboring bladerow effects on the bladerow gap are shown in Fig. 9. In the range where the
duct mode ðs;0Þ is cut-off, the effects clearly become lower and lower as the bladerow gap increases. However, the effects
do not become smaller in the cut-on range of the duct mode, i.e., �1oso10.

6.6. Induced aerodynamic forces on neighboring blade rows

In Fig. 10 the absolute values of the fundamental frequency component of the unsteady lift coefficient jCLjð0;0ÞðrÞj at
midspan r ¼ 0:75 on the oscillating bladerow and on the nonoscillating neighboring bladerows are plotted as functions of
the interblade phase parameter s for the case of S1–R2(V)–S3. It is seen again that the induced aerodynamic forces on the
nonoscillating neighboring bladerows are not small. It is also observed that the influence on the downstream bladerow is
mostly higher than that on the upstream bladerow.



ARTICLE IN PRESS

σ

G
en

er
al

iz
ed

 F
or

ce
 C

F j

-20 -10 0 10 20
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
Stator-Rotor (Vibrating)-Stator

REAL: G/Ca = 1.2
IMAG: G/Ca = 1.2
REAL: G/Ca = 2.0
IMAG: G/Ca = 2.0
REAL: G/Ca = 4.0
IMAG: G/Ca = 4.0
REAL: Isolated Rotor
IMAG: Isolated Rotor

Fig. 9. The generalized force CFj on vibrating Rotor 2. Dependence on the row-to-row distance G.

σ

|C
L

j (
0,

0)
| a

t m
id

sp
an

-10 0 10
0

2

4

6

8

10

S1
R2 (V)
S3
ISOLATED ROTOR

G/Ca = 1.2

Fig. 10. The fundamental component of the local unsteady lift coefficient jCLjð0;0ÞðrÞj (absolute value) at midspan r ¼ 0:75 on each bladerow. Rotor 2 is

vibrating. G ¼ 1:2Ca.

M. Namba et al. / Journal of Sound and Vibration 326 (2009) 599–622614
Fig. 11 shows the case of R1(V)–S2–R3. It should be noticed that the aerodynamic force induced on the next to the next
bladerow is never small, and even larger than that on the next bladerow in a broad range of the interblade phase angle.
Note again that the fundamental frequency of CLjð0;0Þ of Rotor 3 is equal to the vibration frequency of Rotor 1. This suggests
a strong possibility of aeroelastic mutual excitation of simultaneous vibration of the two rotors.

In Fig. 12 the cases of R1(V)–S2–R3 and R1–S2–R3(V) are compared. We can confirm that the influence on the next to the
next bladerow at a downstream station is generally higher than that at an upstream station.

Fig. 13 shows the case of a wider bladerow gap (G ¼ 2:0Ca). The difference in the aerodynamic force on oscillating
bladerow between the case of R1(V)–S2–R3 and the isolated bladerow is clearly small. On the other hand, the aerodynamic
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force on the next to the next bladerow (Rotor 3) is certainly smaller than that of a smaller bladerow gap (Fig. 12). However,
we should rather notice that it is not very small. It implies that the reflecting effect of the nonoscillating neighboring
bladerows on the aerodynamic response of the oscillating bladerow becomes rapidly smaller as the bladerow gap increases,
but the decrease in the induced aerodynamic forces on the nonoscillating neighboring bladerows with increase in the
bladerow gap is rather slow.
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7. Conclusions

The unsteady lifting surface theory for a model of three bladerows, blades of any one of the bladerows are oscillating, is
developed. From numerical studies the following conclusions were drawn.
1.
 The fundamental frequency component of the unsteady aerodynamic force is overwhelmingly dominant not only for the
oscillating bladerow but also for the nonoscillating neighboring bladerows.
2.
 The simultaneous reflecting effects of the adjacent upstream and downstream bladerows significantly modify the
aerodynamic response of oscillating blades.
3.
 The reflecting effect of the next to the next bladerow on the aerodynamic response of oscillating blades is generally
small.
4.
 In the cases of small bladerow gaps, the influence of the neighboring bladerows on the aerodynamic response of
oscillating blades is higher outside the range where the lowest order acoustic duct mode is cut-on than inside the range.
5.
 The aerodynamic force induced by the oscillating bladerow is significant not only on the next bladerow but also on the
next to the next bladerow.
6.
 The reflecting effect of the nonoscillating neighboring bladerows on the aerodynamic response of the oscillating
bladerow becomes rapidly smaller as the bladerow gap increases, but the decrease in the induced aerodynamic forces
on the nonoscillating neighboring bladerows with increase in the bladerow gap is rather slow.
7.
 The fundamental frequency components of the unsteady blade loadings are only slightly influenced by the presence of
the derivative duct modes of the disturbances.

Appendix A. Kernel functions

A.1. Outline of kernel functions

Consider a rotor with the number of blades N rotating at an angular velocity O. Blades are straight with no sweep and

lean, and the axial chord length Ca is constant along the span. Note that the blade chord length Ca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2r2

q
is not

constant. The time mean loading on blades are zero, i.e., the blades are twisted flat plates with zero mean angle of attack.
Assume that the blades are oscillating at an angular frequency o and an interblade phase angle 2ps=N, where s is an

integral number between �N=2 and N=2. The integral number s corresponds to the number of nordal diameter of the
travelling wave mode of bladerow vibration. Then the blade oscillation causes an unsteady loading (fluctuating pressure
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difference between the upper and lower surfaces), which can be described by Dpðr; zÞeiotþi2psm=N: ðm ¼ 0;1;2; . . . ;N � 1Þ.
Here m is a blade number.

Then the disturbance pressure p can be expressed in an integral form as follows:

p ¼ p̃ðr;Z; zÞeiot ¼ eiot
Z 1

h
dr
Z Ca=2

�Ca=2
Dpðr; zÞKpðr;Z; z� zjr;N;O;o;sÞdz. (A.1)

Here Kp is the pressure kernel function given by

Kpðr;Z; z� z jrÞ ¼ 1

r
q
qf
�Or q

qz

� �
Gðr; y0; zjr;f; zÞ

� �
f¼Oz;y0¼ZþOz

, (A.2)

and G is a Green function governed by

r2
�M2

a ioþ q
qz
þO

q
qy0

� �2
" #

G ¼
XN�1

m¼0

ei2pms=N 1

r
dðr � rÞdðy0 � f� 2pm=NÞdðz� zÞ, (A.3)

qG

qr
¼ 0 at r ¼ 1 and h. (A.4)

The disturbance velocity also can be expressed in an integral form:

q̃ðr;Z; zÞeiot ¼ eiot
Z 1

h
dr
Z Ca=2

�Ca=2
Dpðr; zÞKqðr;Z; z� zjr;N;O;o;sÞdz, (A.5)

where Kq is the velocity kernel function defined by

Kqðr;Z; z jrÞ ¼ �e�ioz
Z z

�1

eioz½=½Kpðr;Z; z jrÞ�Z¼y0�Oz�y0¼ZþOz dz. (A.6)
A.2. Green function

Applying the standard method of solution to Eqs. (A.3) and (A.4), we obtain the following expression of the Green
function:

Gðr; y0; zjr;f; zÞ ¼ � N

4pb2
a

X1
m2¼�1

X1
‘¼0

RðnÞ‘ ðrÞR
ðnÞ
‘ ðrÞ

1

LðnÞ‘
EðnÞ‘ ðy

0
�f; z� zÞ, (A.7)

where

n ¼ nN þ s,

EðnÞ‘ ðy
0
�f; z� zÞ ¼ exp½inðy0 �fÞ þ iðM2

a=b
2
a Þðoþ nOÞðz� zÞ �LðnÞ‘ jz� zj�, (A.8)

b2
a ¼ 1�M2

a , (A.9)

LðnÞ‘ ¼

ffiffiffiffi
D
p

: D40 cut-off mode

i sgnðoþOnÞ
ffiffiffiffiffiffiffiffi
�D
p

: Do0 cut-on mode

( )
, (A.10)

D ¼
1

b2
a

ðkðnÞ‘ Þ
2 �

M2
a

b2
a

ðoþOnÞ2

 !
. (A.11)

Further RðnÞ‘ ðrÞ and kðnÞ‘ are the radial eigenfunction and the radial eigenvalue, respectively, which are explained in Appendix B.
Further applying the finite series approximation described in Appendix B.2, we can rewrite the expression of the Green
function as follows:

Gðr; y0; z jr;f; zÞ ¼ � N

4pb2
a

X1
n¼�1

X1
‘¼0

XL�1

j¼0

XL�1

k¼0

Rð1Þ
j
ðrÞRð1Þ

k
ðrÞ

� BBðnÞ
‘j

BBðnÞ
‘k

1

LðnÞ‘
EðnÞ‘ ðy

0
�f; z� zÞ, (A.12)

where BBðnÞ
‘k

is defined by Eq. (B.12) in Appendix B.2.
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A.3. Expressions of the kernel functions

The pressure kernel function Kpðr;Z; z� z jrÞ is obtained from differentiation of the Green function as shown by
Eq. (A.2). Further, the velocity kernel function Kqðr;Z; z� z jrÞ is obtained from integration of differentiated pressure kernel
function as shown by Eq. (A.6).

The velocity kernel function is expressed as a sum of circumferential mode components:

Kqðr;Z; zjr;N;O;o;sÞ ¼
X1

n¼�1
einZKðnÞq ðr; zjr;N;O;o;sÞ ðn ¼ nN þ sÞ. (A.13)

The circumferential mode components of the normal-to-blade-surface velocity kernel function KðnÞqn and the streamwise
velocity kernel function KðnÞqs are expressed as follows:

KðnÞqn ðr; zjr;N;O;o;sÞ ¼
rr

q0ðrÞ

N

4pb2
a

XL�1

j¼0

Rð1Þ
j
ðrÞ
XL�1

k¼0

Rð1Þ
k
ðrÞ

�
XL�1

‘¼0

exp ioz
M2

a

b2
a

þ inOz
1

b2
a

�LðnÞ‘ jzj

" #
FNðnÞ

‘jk

(

þ
1þ sgn z

2
e�ioz½ðFNðnÞ

‘jkð�Þ
� FNðnÞ

‘jkðþÞ
Þ

� ðFNð1Þ
‘jkð�Þ

� FNð1Þ
‘jkðþÞ

Þ�

)
: ðn ¼ nN þ sÞ, (A.14)

KðnÞqs ðr; zjr;N;O;o;sÞ ¼ �
1
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FNðnÞ
‘jk
¼ �DBðnÞ

‘j
DBðnÞ

‘k
LðnÞ‘ =DZðnÞ‘ , (A.16)

DZðnÞ‘ ¼ iðnOþoÞ=b2
a �LðnÞ‘ sgnðz� zÞ, (A.17)

BSðnÞ
‘k
¼ DBðnÞ

‘k
=DZðnÞ‘ , (A.18)

DBðnÞ
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¼

i
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OðnOþoÞM

2
a

b2
a

� n CBðnÞ
‘k

( )
� BBðnÞ

‘k
O sgnðz� zÞ, (A.19)

and CBðnÞ
‘k

is defined by Eq. (B.17) in Appendix B.2. Suffixes ðþÞ and ð�Þ denote values for sgnðz� zÞ ¼ þ1 and �1,
respectively.
Appendix B. Radial eigenfunctions and radial eigenvalues

B.1. Strict solution

Eigenfunctions RðnÞ‘ ðrÞ and eigenvalues kðnÞ‘ are defined by the following Sturm–Liouville boundary value problem:

1

r

d

dr
r

d

dr

� �
þ ðkðnÞ‘ Þ

2 �
n2

r2

 !" #
RðnÞ‘ ðrÞ ¼ 0, (B.1)

d

dr
RðnÞ‘ ðrÞ ¼ 0 at r ¼ 1 and h. (B.2)
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The eigenfunctions are orthogonal and normalized as follows:

Z 1

h
rRðnÞm ðrÞR

ðnÞ
‘ ðrÞdr ¼ dm‘ . (B.3)

Eq. (B.1) is the Bessel’s differential equation, the general solution to which can be expressed as a linear combination of a
Bessel function of the first kind and a Neuman’s Bessel function of the second kind. We can determine the eigenvalues and
eigenfunctions using the standard method of solving the Sturm–Liouville boundary value problem.

B.2. Finite series expansion of the radial eigenfunctions

The eigenfunctions RðnÞ‘ ðrÞ have no definite form for the circumferential wavenumber n!1, and RðnÞ‘ ðrÞ for n!1 can
only be evaluated asymptotically [15]. Because of this character it is very difficult to separate the singular part from the
Fourier–Bessel double series expressions of the kernel functions. To cope with the difficulty the technique of finite series
expansion was invented by the first author [13,14]. The outline of the technique is described below.

The radial variation of the flow fields in axial turbomachines will be weak compared with the circumferential variation.
Therefore the radial expansion series will be allowed to be truncated into a finite series expansion.

The finite series approximation consists of expressing RðnÞ‘ ðrÞ as a finite series in terms of ‘base functions’ Rð0Þm ðrÞ, i.e., the
zero-th-order eigenfunctions,

RðnÞ‘ ðrÞ ¼
XL�1

m¼0

BðnÞ‘mRð0Þm ðrÞ, (B.4)

and determine coefficients BðnÞ‘m so that Eq. (B.1) is satisfied in a weak form, i.e.,

Z 1

h
rRð0Þ

k
ðrÞ

1

r

d

dr
r

d

dr

� �
þ ðkðnÞ‘ Þ

2 �
n2

r2

 !" #
RðnÞ‘ ðrÞdr ¼ 0 for k ¼ 0;1; . . . ; L� 1, (B.5)

which by use of the boundary condition, i.e., Eq. (B.2) becomes

XL�1

m¼0

BðnÞ‘m ðkðnÞ‘ Þ
2 � ðkð0Þm =nÞ2

� �
dmk � Rmk

h i
¼ 0 for k ¼ 0;1; . . . ; L� 1, (B.6)

where

Rmk ¼

Z 1

h

1

r
Rð0Þm ðrÞR

ð0Þ
k
ðrÞdr, (B.7)

ðkðnÞ‘ Þ
2 ¼ ðkðnÞ‘ =nÞ2. (B.8)

Eq. (B.6) implies that ðkðnÞ‘ Þ
2 (‘ ¼ 0;1; . . . ; L� 1) and BðnÞ‘m (‘; m ¼ 0;1; . . . ; L� 1) are eigenvalues and eigenvectors of a

symmetric real matrix, the mk element of which is

Rmk þ ðk
ð0Þ
m =nÞ2dmk. (B.9)

One of the advantages of the finite series expansion is that one can define ‘limit eigenfunctions’ Rð1Þ‘ ðrÞ and ‘limit
eigenvalues’ kð1Þ‘ . Letting n!1 in Eq. (B.6), one can numerically determine Bð1Þ‘m and ðkð1Þ‘ Þ

2 as eigenvectors and
eigenvalues of a matrix ½R‘m�.

Then it holds that

Rð0Þm ðrÞ ¼
XL�1

‘¼0

Bð1Þ‘m Rð1Þ‘ ðrÞ. (B.10)

Substitution of Eq. (B.10) into Eq. (B.4) yields

RðnÞ‘ ðrÞ ¼
XL�1

k¼0

BBðnÞ
‘k

Rð1Þ
k
ðrÞ, (B.11)

where

BBðnÞ
‘k
¼
XL�1

m¼0

BðnÞ‘mBð1Þ
km

. (B.12)

Namely, BBðnÞ
‘k

are coefficients of a series for RðnÞ‘ ðrÞ expanded in terms of ‘new base functions’ Rð1Þ
k
ðrÞ.
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The expansion of delta function dðr � rÞ can be written as follows:

dðr � rÞ ¼ r
XL�1

m¼0

RðnÞm ðrÞR
ðnÞ
m ðrÞ ¼ r

XL�1

m¼0

Rð1Þm ðrÞR
ð1Þ
m ðrÞ. (B.13)

Let CðnÞ
‘k

be coefficients of a series expansion of ð1=r2ÞRðnÞ‘ ðrÞ in terms of Rð0Þm ðrÞ:

1

r2
RðnÞ‘ ðrÞ ¼

XL�1

m¼0

CðnÞ‘mRð0Þm ðrÞ. (B.14)

Then

CðnÞ‘m ¼

Z 1

h

1

r
Rð0Þm ðrÞR

ðnÞ
‘ ðrÞdr ¼

XL�1

k¼0

BðnÞ
‘k

Rmk. (B.15)

Substitution of Eq. (B.10) into Eq. (B.14) yields

1

r2
RðnÞ‘ ðrÞ ¼

XL�1

k¼0

CBðnÞ
‘k

Rð1Þ
k
ðrÞ, (B.16)

where

CBðnÞ
‘k
¼
XL�1

m¼0

CðnÞ‘mBð1Þ
km

. (B.17)

Namely CBðnÞ
‘k

’s are coefficients of a series expansion of ð1=r2ÞRðnÞ‘ ðrÞ in terms of Rð1Þ
k
ðrÞ.

Appendix C. Expressions of coefficients of system equations

The functions Rð1Þ
k
ðrÞ, FmðfÞ and Kqnðr;0; z� zjrÞ are known functions. Therefore the coefficient matrix IKj jða;bÞkmðr; zÞ

defined by Eq. (56) can be obtained by conducting the integration. The expression of the integrand is too complicated to be
integrated analytically, and the integration should be conducted numerically.

We should note, however, that the infinite series (A.13) is nonuniformly convergent series, and it is divergent at z ¼ 0

because limn!1FNðnÞ
‘jk

a0 in Eq. (A.14). In fact, the upwash velocity kernel function Kqnðr;Z; z� zjrÞ is singular at an airfoil

surface (Z ¼ 0, z ¼ z) with singularities of 1=ðz� zÞ and log jz� zj. Therefore the Cauchy’s principal value of integral must be
calculated.

Numerical evaluation of the principal value of the integral should be avoided from the accuracy point of view. To attain
high accuracy, we should separate the kernel function into a singular part and a regular part. The singular part can be
expressed in terms of elementary functions, so that the principal value of the integral can be evaluated analytically. On the
other hand the regular part is expressed in terms of uniformly convergent series, so that the numerical integration can be
performed with a sufficient accuracy.

To extract the singular part from the nonuniformly convergent Fourier series, we should find the asymptotic behaviors
of the terms at large wavenumbers.

In order to apply this method to the upwash velocity kernel function Kqn defined by Eqs. (A.13) and (A.14), we must

make clear the asymptotic behaviors of LðnÞ‘ defined by Eq. (A.10) and FNðnÞ
‘jk

defined by Eq. (A.16). After some laborious

calculations, we can find

LðnÞ‘ ¼ jnjL̂
ð1Þ

‘ �
M2

a

b4
a

Oo 1

L̂
ð1Þ

‘

sgnðnÞ þ Oðn�1Þ, (C.1)

FNðnÞ
‘jk
¼ FNð1Þ

‘jk
þ d‘jd‘k

1

jnj

iokð1Þ2‘

L̂
ð1Þ

‘

þ Oðn�2Þ, (C.2)

at large n, where

FNð1Þ
‘jk
¼ �d‘jd‘kb

2
aL̂
ð1Þ

‘ fsgnðz� zÞb2
aL̂
ð1Þ

‘ � i sgnðnÞOg, (C.3)

L̂
ð1Þ

‘ ¼ ð1=baÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð1Þ2‘ � ðM2

a=b
2
a ÞO

2
q

, (C.4)

kð1Þ‘ ¼ lim
n!1

kðnÞ‘ =n. (C.5)

We should like to emphasize that it is the method of the finite series expansion of the radial eigenfunctions described in

Appendix B.2 that enables one to determine the definite values of kð1Þ‘ for individual radial order ‘.
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After some calculations, we finally obtains the following expressions:

IKj jða;bÞkmðr; zjÞ ¼
Caj

2

Z p

0
TBkðr;0; zj þ

Caj

2
cosf; jða;bÞÞFSmðfÞdf

þ
b2

a

2

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q Rð1Þ

k
ðrÞL̂

ð1Þ

jk

ð�1Þ : m ¼ 0

cos my : m � 1

( )

þ
i

4

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q Rð1Þ

k
ðrÞ

ojða;bÞCajk
ð1Þ2
k

b2
aL̂
ð1Þ

jk

ðlog
Caj

4 � cosyÞ : m ¼ 0

1
2 ðlog

Caj

4 þ
1
2 cos 2yÞ : m ¼ 1

1
2

cosðmþ1Þy
mþ1 �

cosðm�1Þy
m�1

� �
: m � 2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

, (C.6)

FSmðfÞ ¼
1þ cosf : m ¼ 0

sin mf sinf : m � 1

( )
, (C.7)

zj ¼ �ðCaj=2Þ cos y, (C.8)

TBkðr;Z; z; jða;bÞÞ ¼ �
NBj

4pb2
a

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2

j r2
q XL�1

v¼0

Rð1Þv ðrÞKQ ðRÞ
vk
ðz;Z;ojða;bÞ;sjða;bÞÞ

"

þRð1Þ
k
ðrÞfKQ ðSWÞ

k
ðz;Z;ojða;bÞ;sjða;bÞÞ þ KQ ðSRÞ

k
ðz;Z;ojða;bÞ;sjða;bÞÞg

#
. (C.9)

Expressions of the functions KQ ðRÞ
vk

, KQ ðSKÞ
k

and KQ ðSRÞ
k

are omitted to save space.

On the other hand, the bladerow coupling terms IK
ðgÞ
j j0ða;bÞkm

ðr; zj � Gj0 þ GjÞ defined by Eq. (56) have no singularity, and

we can formally conduct integration with respect to r, and obtain the following expression:

IK
ðgÞ
j j0ða;bÞkm

ðr; zj � Gj0 þ GjÞ

¼ e
�ina;b;g ðOj0 �OjÞzj�Oj0 ðGj0 �GjÞþyj00�y0j

n o
Caj0

2

Z p

0
FSmðfÞ

� K
ðg;kÞ
qnj j0

ðr; zj � Gj0 þ Gj þ
Caj0

2
cosf;NBj0 ;Oj0 ;oj0ða;bÞ;sj0ða;bÞÞ

" #
df, (C.10)

where

z ¼ �ðCaj=2Þ cosf,

K
ðg;kÞ
qnj j0

ðr; z;NBj0 ;Oj0 ;oj0ða;bÞ;sj0ða;bÞÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þO2
j0 r

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þO2
j r2

q
�f�ðOj �Oj0 ÞrK

ðg;kÞ
qs ðr; z;NBj0 ;Oj0 ;oj0ða;bÞ;sj0ða;bÞÞ

þ ð1þOj0Ojr
2ÞK
ðg;kÞ
qn ðr; z;NBj0 ;Oj0 ;oj0ða;bÞ;sj0ða;bÞÞg, (C.11)

K
ðg;kÞ
qn ðr; z;N;O;o;sÞ ¼

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2r2

q N

4pb2
a

XL�1

j¼0

Rð1Þ
j
ðrÞ

�
XL�1

‘¼0

exp ioz
M2

a

b2
a

þ inOz
1

b2
a

�LðnÞ‘ jzj

" #
FNðnÞ

‘jk

(

þ
1þ sgn z

2
e�ioz½ðFNðnÞ

‘jkð�Þ
� FNðnÞ

‘jkðþÞ
Þ � ðFNð1Þ

‘jkð�Þ
� FNð1Þ

‘jkðþÞ
Þ�

)
, (C.12)
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K
ðg;kÞ
qs ðr; z;N;O;o;sÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2r2

q N

4pb2
a

XL�1

j¼0

Rð1Þ
j
ðrÞ
XL�1

‘¼0

exp ioz
M2

a

b2
a

þ inOz
1

b2
a

�LðnÞ‘ jzj

" #
BBðnÞ

‘j
DBðnÞ

‘k

� io 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þO2r2

q N

4pb2
a

XL�1

j¼0

Rð1Þ
j
ðrÞ
XL�1

‘¼0

exp ioz
M2

a

b2
a

þ inOz
1

b2
a

�LðnÞ‘ jzj

" #
BBðnÞ

‘j
BSðnÞ
‘k

(

þ
1þ sgn z

2
e�iozBBðnÞ

‘j
½BSðnÞ

‘kð�Þ
� BSðnÞ

‘kðþÞ
�

)
, (C.13)

n ¼ gN þ s. (C.14)
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